

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK

SUB CODE / SUBJECT: CS1002 UNIX INTERNALS YEAR / SEM: II / III

UNIT I- GENERAL OVERVIEW OF THE SYSTEM

Part A (2 MARKS)

- 1. Define shell and mention the properties of UNIX OS.
- 2. Mention the use of the fork System call and command "Passwd"
- 3. Differentiate between Exceptions & interrupts.
- 4. List the building block primitives of UNIX with Examples.
- 5. Kernel laid to be non-preemptive comment.
- 6. Define Swpping&paging
- 7. Advantages and disadvantages of kernel data Structure
- 8. Define pathname component
- 9. Differentiate user mode & kernel mode
- 10 Draw a diagram process Execution levels.
- 11. What are the 3 levels of UNIX operating system?
- 12. Define System call interface
- 13. What are the subsystems of UNIX Os
- 14. Define Zambia State process transition
- 15. Define Sleep and Wakeup

	Part B 16 Marks	
1.	(a)Explain the details about UNIX System Architecture.	(8)
	(b)Briefly details about System Structure	.(8)
2.	Explain the details Operating System services.	(16)
3.	Explain the details about process states & state Transition.	(16)
4.	Explain the details about system concepts	(16)
5.	Explain Assumption about Hardware	(16)
6.	Explain the details about the User perspective	(16)

MaanavaN.Com

CS1002 UNIX INTERNALS

UNIT II- BUFFER CACHE

Part A (2 MARKS)

٦.	Define	ninaa
	1 1011110	

- 2. Define major & minor number
- 3. Define buffer cache.
- 4. Mention the use of LSEEK System call.
- 5. Write the I/O parameters saved in the U area.
- 6. Define Inode Cache
- 7. What does the kernel in buffer read-ahead?
- 8. List out the various status of the buffer.
- 9. State the advantages and disadvantages of buffer cache
- 10. Define inode.
- 11. List the data structures and their relationship when a regular file is opened
- 12. Define free list
- 13. What are the fields of super block?
- 14. Define super block
- 15. Define directories.

1. Explain in detail about the structure of regular file	(16)
2.(a) Explain the algorithm for converting the path name to inode	(8)
(b) Explain the system call used for creating the special files	(8)
3. Write notes on	
a) Directories	(8)
b) Super blocks	(8)
4. (a) Explain the details about buffer headers	. (8)
(b) Explain the structure of buffer pool	(8)

Part B

16 Marks

UNIT III- SYSTEM CALLS FOR FILE SYSTEM

16 Marks

Part B

١.	Define named and unnamed pipe				
2.	Define major and minor number				
3.	Define inode cache				
١.	Lis	t the data structures and their relationship when opening a regular			
5.	Exp	plain file and record locking.			
S.	Exp	Explain on Lseek.			
7.	De	Define inode.			
3.	Wh	nat is a system call and give 2 eg's.			
).	Define pipe				
0.	De	fine dup.			
1.	De	fine close system call and their syntax.			
2.	2. Define Mounting system call and their syntax.				
3.	De	fine Un Mounting system call and their syntax.			
4.	De	fine write system call and their syntax			
5.	De	fine open system call and their syntax			
		Part B 16 Marks			
	1.	Discuss the concepts of pipes and DUP system call	(16)		
	2.	Explain how a file is mounted and unmounted from the file structure	(16)		
	3.	(a) Discuss the open system call and algorithm		(8)	
		(b)Discuss the close system call and algorithm		(8)	
	4.	(a) Discuss the read system call and algorithm		(8)	
		(b) Discuss the write system call and algorithm		(8)	
	5.	(a) Briefly explain file creation concepts		(8)	
		(b) Short notes on File locking & Record Locking		(8)	

UNIT IV- THE STRUCTURE OF PROCESSES

Part A (2 MARKS)

- 1. Define signals
- 2. Define context of the process
- 3. Define system boot.
- 4. Define init process
- 5. What are the first 3 steps of process states and transition
- 6. What are the fields of process table
- 7. Define context switch
- 8. Define pages and page tables
- What is mean by region
- 10. Define U area
- 11. Define interrupts
- 12. Define Exception
- 13. define Abort process
- 14. define process groups
- 15. Give one example of Exit

Part B 16 Marks

- 1. What is region? state any 3 region system calls that are invoked by a process, one when getting hold a region, one during execution and one while relinquishing it back(16)
- 2. Describe the state transition that a process undergoes during its lifetime (16)
- (a) Every process maintains a private U area. Describe how the U area is maintained with the help of register triples.(8)
 - (b)Write short notes on Signals

(8)

- 4. Discuss the context of a process in detail (16)
- 5. Write the algorithm involved in creating a new process and explain it (16)
- 6. Write and explain the algorithm for booting the system (16)

5

CS1002 UNIX INTERNALS

MaanavaN.Com

PROCESS SCHEDULING AND MEMORY MANAGEMENT POLICIES UNIT V Part A (2 MARKS)

- 1. Define scheduling
- 2. Define swapping
- 3. Define demand paging
- 4. Define system calls and give examples
- 5. Explain user priorities and kernel priorities
- 6. Examples of process scheduling
- 7. Define fair share group priorities
- 8. Explain real time processing
- 9. Define clock interrupts and function
- 10. Define map
- 11. Discuss briefly the parameter related to process scheduling
- 12. Write a brief note on the Page stealer process
- 13. What is the process of swapping process out.
- 14. Define Fork Swap
- 15. Define Expansion Swap

Part B 16 Marks

- 1. Explain process scheduling (16)
- 2. What is the function of a clock interrupt handler? Details any 3 function along with the system calls and their data structures (16)
- 3. What are the data structures related to paging(16)
- 4. What is page fault? Discuss the page fault related to validity fault and details all the cases when the page is faulted.(16)
- Write short notes on
 - a. Allocations of swap space (8)
 - b. Swapping processes out (8)
- 6.(a) Explain briefly the concepts involved in driver interface (8)
 - (b) Write short notes on terminal drivers (8)
- 7. Write detail notes on disk drivers (16)